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The parametric instability behaviour of curved panels with cutouts subjected to in-plane
static and periodic compressive edge loadings are studied using "nite element analysis. The
"rst order shear deformation theory is used to model the curved panels, considering the
e!ects of transverse shear deformation and rotary inertia. The theory used is the extension of
dynamic, shear deformable theory according to Sanders' "rst approximation for doubly
curved shells, which can be reduced to Love's and Donnell's theories by means of tracers.
The e!ects of static and dynamic load factors, geometry, boundary conditions and the
cutout parameters on the principal instability regions of curved panels with cutouts are
studied in detail using Bolotin's method. Quantitative results are presented to show the
e!ects of shell geometry and load parameters on the stability boundaries. Results for plates
are also presented as special cases and are compared with those available in the literature.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The structural elements subjected to in-plane periodic forces may lead to dynamic
instability, due to certain combinations of the values of load parameters. The instability
may occur below the critical load of the structure under compressive loads over a range or
ranges of excitation frequencies. Several means of combating resonance such as damping
and vibration isolation may be inadequate and sometimes dangerous with reverse results
[1]. Cutouts are inevitable in aerospace, civil, mechanical and marine structures mainly for
practical considerations. In aerospace structures, cutouts are commonly found as access
ports for mechanical and electrical systems, or simply to reduce weight. Cutouts in wing
spars and cover panels of commercial transport wings and military "ghter wings are needed
to provide access for hydraulic lines and for damage inspection. Cutouts are also made to
lighten the loads, provide ventilation and for modifying the resonant frequency of the
structures. In addition, the designers often need to incorporate cutouts or openings in
a structure to serve as doors and windows. Thus the dynamic stability of structures with
cutouts are of great technical importance for understanding the dynamic systems under
periodic loads.

Despite the practical importance of these structures, the number of technical papers and
reports dealing with the subjects are very limited due to the complexity involved. An
extensive bibliography of earlier works on these problems are given in review papers [1}3]
through 1987. The parametric instability characteristics of plates subjected to various types
of loads was studied by Hutt and Salam [4]. Lee and Ng [5] studied the dynamic stability of
plate on multiple line and point supports. Most of the investigators [6}8] studied the
022-460X/02/140683#14 $35.00/0 � 2002 Elsevier Science Ltd.
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dynamic stability of closed cylindrical shells with a simply supported boundary condition,
using an analytical approach. The dynamic instability of conical shells was studied by
Ng et al. [9] using Generalized Di!erential Quadrature method. The study of the
parametric instability behaviour of curved panels is new. The dynamic stability of uniaxially
loaded cylindrical panels with transverse shear e!ects is studied by Ng et al. [10]. The
dynamic stability of laminated composite cylindrical shells were studied by Ng et al. [11],
Ganapathi and Balamurugan [12] and many others. Previous investigations involving
cutouts were mainly con"ned to free vibration of plates. A "nite element analysis of
a clamped plate with di!erent cutout sizes, along with experiments using holographic
interferometry, was carried out by Monahan et al. [13]. Paramsivam [14] used a "nite
di!erence approach in analyzing the e!ects of openings on the fundamental frequencies of
plates with simply supported and clamped boundary conditions. The dynamic
characteristics of rectangular plates with one or two cutouts using a "nite di!erence
formulation, based on variational principles were obtained by Aksu and Ali [15], along
with experimental veri"cations. Ali and Atwal [16] studied the natural frequencies of simply
supported rectangular plates and rectangular cutouts using the Rayleigh}Ritz method. The
linear and large amplitude #exural vibration of isotropic and composite plates with cutout
was studied by Reddy [17] using "nite element method. Mundkur et al. [18] studied the
vibration of square plates with square cutouts by using boundary characteristics
orthogonal polynomials satisfying the boundary conditions. Chang and Chiang [19]
studied the vibration of the rectangular plate with an interior cutout by using "nite element
method. Lam and Hung [20] investigated the #exural vibrations of plates with
discontinuities in the form of cracks and cutouts using orthogonal polynomial functions,
generated using the Gram Schmidt process. Lee et al. [21] predicted the natural frequencies
of rectangular plates with an arbitrarily located rectangular cutout. Huang and Sakiyama
[22] analyzed the free vibration of rectangular plates with variously shaped holes. Rossi
[23] has dealt with the frequency of transverse vibrations of the structural systems,
especially with the "xed boundaries. Young et al. [24] presented the free vibration of thick
rectangular plates with depression, grooves or cutouts using three-dimensional (3-D)
elasticity and Ritz method. Ritchie and Rhodes [25] have investigated theoretically and
experimentally the behaviour of simply supported uniformly compressed rectangular plates
with central holes, using a combination of Rayleigh}Ritz and "nite element methods. The
buckling of rectangular plates with central cutouts are investigated by Ko [26] using
structural performance and resizing (SPAR) "nite element computer program. Brogan et al.
[27] presented analytical and experimental investigations of the dynamic behaviour of
closed circular cylindrical shell with a rectangular cutout. Toda and Komatsu [28] studied
analytically and experimentally the e!ect of circular cutouts on the resonant frequencies of
thin cylindrical shells using simpli"ed Rayleigh}Ritz type approximations. The e!ects of
cutouts on the natural frequencies of curved panels have been treated sparsely in the
literature. Liew and Lim [29] examined the natural frequencies and vibratory
characteristics of shallow shells having an outer super-elliptical periphery and an inner
super-elliptical cutout using the Ritz procedure. The free vibration characteristics of
unsti!ened [30] and longitudinally sti!ened [31] square panels with symmetrical square
cutouts are investigated by Sivasubramonian et al. using "nite element method. To the best
of the authors' knowledge, there is no study involving dynamic stability of curved panel
with a cutout. The application of a cutout on the structural component will alter the global
quantities such as stresses, free vibration frequency, buckling load and dynamic instability
region (DIR).

In the present study, the dynamic stability of curved panels with cutouts are investigated.
The in#uences of various parameters like e!ects of static and dynamic load factors, size of
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cutout, geometry and various boundary conditions on the instability behaviour of curved
panels have been examined. The present formulation of the problem is made general to
accommodate a doubly curved panel with "nite curvatures in both the directions having
arbitrary load and boundary conditions.

2. THEORY AND FORMULATIONS

The basic con"guration of the problem considered here is a doubly curved panel with
cutout as shown in Figure 1, subjected to harmonic in-plane edge loading.

2.1. GOVERNING EQUATIONS

The equation of equilibrium for free vibration of a shear deformable doubly curved panel
with cutout subjected to in-plane external loading can be written as:
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Figure 1. Geometry and co-ordinate systems of a doubly curved panel with cutout.
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whereN�
�
andN�

�
are the external loading inX and> directions respectively.C

�
andC

�
are

tracers by which the analysis can be reduced to that of Sanders', Love's and Donnell's
theories. If the tracer coe$cients C

�
"C

�
"1, the equation corresponds to the

generalization of Sanders' "rst approximation theory. The case C
�
"1, C

�
"0 correspond

to Love's theories of thin shells generalized to include shear deformations. Finally, if
C

�
"C

�
"0, the equation is reduced to a shear deformable version of Donnell's theories.

The constants R
�
,R

�
and R

��
identify the radii of curvature in the X, > directions and the

radius of twist. The equation of motion can be written in matrix form as

[M]�qK �#[[K
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The in-plane load N(t) is periodic and can be expressed in the form
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where � and � are termed as static and dynamic load factors respectively. Using equation
(3), the equation of motion is obtained as
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] cos �t]�q�"0. (5)

Equation (5) represents a system of second order di!erential equations with periodic
coe$cients of the Mathieu}Hill type. The development of regions of instability arises from
Floquet's theory which establishes the existence of periodic solutions. The boundaries of the
dynamic instability regions are formed by the periodic solutions of period ¹ and 2¹, where
¹"2	/�. The boundaries of the primary instability regions with period 2¹ are of practical
importance [32] and the solution can be achieved in the form of the trigonometric series

q(t)"
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Putting this in equation (5) and if only the "rst term of the series is considered, equating
coe$cients of sin �t/2 and cos �t/2, equation (5) reduces to

�[Ke]!�Ncr[Kg]��
�
�Ncr[Kg]!

�2

4
[M]��q�"0. (7)

Equation (7) represents an eigenvalue problem for known values of �, � and N
��
. The two

conditions under a plus and minus sign correspond to two boundaries of the dynamic
instability region. The eigenvalues are �, which give the boundary frequencies of the
instability regions for given values of � and �. In this analysis, the computed static buckling
load of the panel is considered as the reference load in line with Moorthy et al. [33] and
Ganapathi et al. [34].

The eight-node curved isoparametric quadratic element is employed in the present
analysis with "ve degrees of freedom (d.o.f.) u, v,w, �

�
and �

�
per node. First order shear

deformation theory (FSDT) is used and the shear correction coe$cient has been employed
to account for the non-linear distribution of the shear strains through the thickness. The



CURVED PANEL DYNAMIC STABILITY 687
displacement "eld assumes that mid-plane normal remains straight but not necessarily
normal after deformation, so that

u
 (x, y, z)"u(x, y)#z�
�
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 (x, y, z)"v(x, y)#z�
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(x, y), w
 (x, y, z)"w(x, y), (8)

where �
�
, �

�
are the rotations of the mid-surface. Also, u
 , v
 , w
 and u, v,w are the

displacement components in the x, y, z directions at any section and at mid-surface
respectively. The constitutive relationships for the shell are given by
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Reissner's shear correction factor of 5/6 is included for all numerical computations.
Extensions of shear deformable Sanders' kinematic relations for doubly curved shells
[35, 36] are used in the analysis. The linear strain displacement relations are
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The element geometric sti!ness matrix for the doubly curved panel is derived using the
non-linear strain components as
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The element matrices are derived as

Elastic sti+ness matrix

[k
�
]
�
"� [B]	[D][B]dx dy. (16)

Geometric sti+ness matrix

[k
�
]
�
"�[G]	[S][G] dv. (17)

Consistent mass matrix

[m]
�
"�[N]	[I][N] dx dy (18)

The overall matrices [K
�
], [K

�
] and [M] are obtained by assembling the corresponding

element matrices.

2.2. COMPUTER PROGRAM

A computer program has been developed to perform all the necessary computations.
Element elastic sti!ness matrices and mass matrices are obtained using a standard
procedure. The geometric sti!ness matrix is essentially a function of the in-plane stress
distribution in the element due to applied edge loadings. Since the stress "eld is
non-uniform, due to cutout, plane stress analysis is carried out using the "nite element
method to determine the stresses and these are used to formulate the geometric sti!ness
matrix. Reduced integration technique is adopted in order to avoid possible shear locking.
Element matrices are assembled into global matrices, using skyline technique. Subspace
iteration method is adopted throughout to solve the eigenvalue problems.

3. RESULTS AND DISCUSSIONS

The convergence studies have been carried out for fundamental frequencies of vibration
of the SSSS square plates with a square hole of size ratio c/a"0)5, for di!erent mesh



TABLE 1

Convergence of non-dimensional fundamental frequencies of an SSSS square plate with a
hole of size ratio c/a"0)5. a/b"1, b/h"100; �"0)3; non-dimensional frequency,

�"�
 a��(�h/D)

Non-dimensional frequencies
Mesh

division 1 2 3 4

8�8 23)570 40)5227 40)5227 72)2728
12�12 23)4703 40)1072 40)1072 71)4209
16�16 23)4364 39)9793 39)9793 71)1964
20�20 23)4218 39)9287 39)9287 71)1090

Reference [21] (23)329) 39)712 39)712 (71)263)

TABLE 2

Comparison of non-dimensional fundamental frequencies of a simply supported SSSS square

plate with a cutout. a/b"1, b/h"100, �"0)3; non-dimensional frequency, �"�N a��(�h/D )

Non-dimensional frequencies

c/a Present PACFAC [20] Reference [21] Reference [20] Reference [18] Reference [37]

0 19)7336 19)752 19)739 19)740 19)7392 19)57
0.2 19)1339 19)120 18)901 18)762 20)1933 19)16
0)4 20)7387 20)732 20)556 20)785 * *

0)5 23)4218 23)235 23)329 23)664 24)243 23)650
0)6 28)3068 28)241 28)491 28)844 * *

0)8 56)9487 57)452 58)847 58)062 58)3585 58)25

CURVED PANEL DYNAMIC STABILITY 689
divisions. As shown in Table 1, the frequencies of vibration are computed and the results are
compared with the values by Lee et al. [21]. It shows the su$cient accuracy of the
numerical solutions by the present method. From the above convergence study, 20�20
mesh has been employed to idealize the panel in the subsequent analysis. In order to
investigate the accuracy and e$ciency of the present formulation, the frequency parameters
of plates with di!erent cutout sizes are compared with the results using the package
PACFAC 75 [20], the orthogonal polynomial functions by Lam and Hung [20], the
numerical method based on Rayleigh quotient by Lee et al. [21], boundary characteristics
orthogonal polynomials functions in the Rayleigh}Ritzmethod byMundkar et al. [18], and
that of Koushal and Bhat [37]; which are presented in Table 2. Good agreement exists for
the present "nite element results with those available in the literature. The present
formulation is then validated for buckling of plate with cutout with the graphical results
using the structural performance and resizing (SPAR) "nite element computer program by
Ko [26]. As seen from Figure 2, good agreement exists between both the "nite element
results. To validate the formulation further, the free vibration frequency parameters with
computational results for clamped (CCCC) curved panel having cutout are compared with
the work carried out by Sivasubramonian et al. [31]. The results are shown in Table 3. The
above studies indicate good agreement between the present study and those from the
literature. Once the free vibration and buckling results are validated, the dynamic instability
studies are carried out.



Figure 2. Comparison of buckling loads of plates with di!erent sizes of cutouts: (�) SSSS (reference [26]);
(�) CCCC (reference [26]); (**) Present work.

TABLE 3

Comparison of frequencies in Hz for the CCCC cylindrical curved panel with and without
cutout. a"b"500 mm, h"2 mm, �"0)3, E"7020 kg/mm�, �"2720 kg/m�

R c/a"0)0 c/a"0)5
Mode
no Present FEM Reference [31] Present FEM Reference [31]

Plate 1 69.76 69)2 126)73 125)7
2 142)27 140)9 147)92 147)3
3 142)27 140)9 147)92 147)3
4 209)79 206)9 199)04 199)2

2000 1 215)23 213)9 184)73 185)3
2 245)23 243)2 187)52 188)2
3 328)34 326)1 295)68 295)9
4 336)83 333)3 310)30 309)7

690 S. K. SAHU AND P. K. DATTA
3.1. DYNAMIC STABILITY STUDIES

The DIR are plotted for a #at and cylindrical panel with/without static component to
consider the e!ects of static load factor, size of cutout, di!erent panel geometry and
boundary conditions. A simply supported plate of dimensions a"b"500 mm, h"5mm,
E"70 Gpa, �"0)3, �"2800 kg/m� is described as a standard case and the computed
buckling load of this panel is taken as the reference load in line with Moorthy et al. [33].
The non-dimensional excitation frequency �"�M a���h/D is used throughout the dynamic
instability studies (unless otherwise mentioned), where �M is the excitation frequency in rad/s,
D"Eh�/12(1!��) . For a given panel, the e!ect of size of cutout on the instability region
are studied from 0)0 (no cutout) to 0)8 at an interval of 0)1. However, for clarity, the plots are
shown for size of cutout 0)0 (no cutout) to 0)8 at an interval of 0)2 and c/a"0)5 and are
presented in Figure 3. The results of plates with cutout ratio c/a"0)0 is compared with



Figure 3. E!ect of size of cutout on instability region of the simply supported plate for c/a" , 0)0 (reference
[4]); �, 0)0; �, 0)2; �, 0.4; �, 0.5; #, 0.6 and �, 0.8; a/R

�
"0, b/R

�
"0)0, �"0)0.

Figure 4. E!ect of static load factor on instability region of the simply supported plate with cutout: a/b"1,
a/R

�
"0)0, b/R

�
"0)0, c/a"0)5 for �"�, 0)0; �, 0)2 and �, 0)4.
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those of Hutt and Salam [4], which is in close agreement.With the introduction of cutout, it
can be observed that, the onset of instability occurs with lower excitation frequencies for
small cutouts in simply supported plates up to c/a"0)2. With an increase of cutout size, the
onset of excitation frequency increases along with wider dynamic instability regions. The
onset of instability occurs with higher excitation frequency for plates with cutout size of
c/a"0)4 onwards than those without cutout (c/a"0)0). The onset of instability occurs at
a higher excitation frequencies up to plates with cutout of c/a"0)8 with wider instability
regions. This may be attributed to the predominance of the boundary restraints over the
entire plate. The e!ect of static component of load on the instability regions of the plate with
a cutout of size c/a"0)5 is studied for �"0)0, 0)2 and 0)4, as shown in Figure 4. Due to an



Figure 5. E!ect of cutout on instability region of di!erent curved panels: #at panel (a/R
�
"b/R

�
"0),

cylindrical (a/R
�
"0, b/R

�
"0)25), spherical (a/R

�
"b/R

�
"0)25), hyperbolic paraboloid (a/R

�
"!0.25,

b/R
�
"0.25) for a/b"1, c/a"0)5 and �"0)2. geometry: �, plate; �, cylindrical; �, spherical; T, hyperbolic

paraboloid.

Figure 6. E!ect of size of cutout on instability region of the simply supported cylindrical panel for c/a"�, 0)0;
�, 0)2; �, 0)4; �, 0)5; #, 0)6; �, 0)7 and �, 0)8; a/R

�
"0, b/R

�
"0)25, �"0)2.
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increase of static component, the instability regions tend to shift to lower frequencies and
become wider. All further studies are carried out with a static load factor of 0)2 (unless
otherwisementioned). Studies have also been made for the comparison of instability regions
for di!erent shell geometries. The dynamic instability regions are plotted for plate and
di!erent curved panels such as cylindrical (b/R

�
"0)25), spherical (a/R

�
"b/R

�
"0)25) and

hyperbolic paraboloids (a/R
�
"!0)25, b/R

�
"0)25) with cutouts of c/a"0)5 and are

compared in Figure 5. It is observed, that the excitation frequency increases with the
introduction of curvatures from the plate to curved panels with cutout. However, the



Figure 7. E!ect of boundary conditions (�, SSSS; �, CSCS; �, SCSC; �, CCCC) on instability region of the
curved panel for a/b"1, a/R

�
"0)0, b/R

�
"0)25, c/a"0)3 and �"0)2.

Figure 8. E!ect of cutout on instability region of the curved panel subjected to biaxial loading for a/b"1,
�"0)2 and c/a"�, 0)0 and �, 0)5.
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hyperbolic paraboloid with cutout shows similar instability behaviour as that of a #at panel
with no sti!ness being added due to the curvature of the panel with cutout. Similar
observations were also obtained by Leissa and Kadi [38] on a study of free vibration of
shells, especially on a supported planform. The e!ect of size of cutout on instability regions
of a simply supported cylindrical panel is investigated for c/a"0)0, 0)2, 0)4, 0)5, 0)6 and 0)8.
As shown in Figure 6, the onset of instability occurs earlier with an increase of size of cutout
up to c/a"0)5. With further increase of cutout, the excitation frequency gradually increases
having wider dynamic instability regions. The onset of instability occurs with higher
excitation frequency for the cylindrical panel with cutout size c/a"0)8 than that without
cutout with very wide dynamic instability region. The onset of instability will even occur
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earlier for a cylindrical panel with cutout c/a"0)8 for a higher value of dynamic load
beyond �"0)6. Figure 7 shows the in#uence of di!erent boundaries (SSSS, SCSC, CSCS,
CCCC) on the principal instability regions. As expected, the instability occurs at a higher
excitation frequency from simply supported to clamped edges due to the restraint at the
edges. The width of the instability regions also decreased with the increase of restraint at the
edges. The study is then extended to dynamic stability of a cylindrical panel with cutout
subjected to biaxial loading. The instability regions are plotted for the cylindrical panel with
cutout c/a"0)5 and compared with that of the panel without cutout. As shown in Figure 8,
the instability appears at a lower excitation frequency with increasing dynamic instability
region for biaxial loading of cylindrical panel with cutout.

4. CONCLUSION

The results of the stability studies of the plates and shells with cutout can be summarized
as follows:

1. The onset of instability occurs at lower excitation frequencies with increase of cutout size
in plates with wider instability regions. With further increase of size of cutout, the
excitation frequency increases and is sometimes higher than that of the plate without
cutout.

2. Due to static component, the instability regions tend to shift to lower frequencies with
wide instability regions showing destabilizing e!ect on the dynamic stability behaviour
of the curved panel with cutout.

3. The e!ect of curvature is reduced with increase of size of cutout.
4. The curved panels with cutout show more sti!ness with the addition of curvatures. But

the hyperbolic paraboloid panels, especially on a supported planform, behave like a plate
with no sti!ness being added due to the curvature of the shell.

5. The instability regions have been in#uenced due to restraint provided at the edges of the
curved panel with cutout. The predominance of the boundary restraints may be
responsible for increase of excitation frequencies, especially for plate and curved panels
with higher size of cutout. The onset of instability occurs for curved panels with restraints
at the straight edges than that of curved boundary.

6. It was observed that instability appears at lower excitation frequency with increasing
dynamic instability region for cylindrical panel with cutout, subjected to biaxial loading.
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APPENDIX A: NOMENCLATURE

a,b dimensions of shell
R

�
,R

�
radii of curvatures

c, d dimensions of the cutout
E Young's modulus
G shear modulus
[K] sti!ness matrix
[K

�
] geometric sti!ness matrix

[M] mass matrix
N

��
critical buckling load

�q� vector of generalized co-ordinates
w de#ection of mid-plane of shell
� the Poisson ratio
� mass density
�
�
,�

�
rotations about axes

�, � frequency of forcing function and transverse vibration
�, � static and dynamic load factors
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